88 research outputs found

    Rejection-Cascade of Gaussians: Real-time adaptive background subtraction framework

    Full text link
    Background-Foreground classification is a well-studied problem in computer vision. Due to the pixel-wise nature of modeling and processing in the algorithm, it is usually difficult to satisfy real-time constraints. There is a trade-off between the speed (because of model complexity) and accuracy. Inspired by the rejection cascade of Viola-Jones classifier, we decompose the Gaussian Mixture Model (GMM) into an adaptive cascade of Gaussians(CoG). We achieve a good improvement in speed without compromising the accuracy with respect to the baseline GMM model. We demonstrate a speed-up factor of 4-5x and 17 percent average improvement in accuracy over Wallflowers surveillance datasets. The CoG is then demonstrated to over the latent space representation of images of a convolutional variational autoencoder(VAE). We provide initial results over CDW-2014 dataset, which could speed up background subtraction for deep architectures.Comment: Accepted for National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG 2019

    Multimodal 3D Object Detection from Simulated Pretraining

    Full text link
    The need for simulated data in autonomous driving applications has become increasingly important, both for validation of pretrained models and for training new models. In order for these models to generalize to real-world applications, it is critical that the underlying dataset contains a variety of driving scenarios and that simulated sensor readings closely mimics real-world sensors. We present the Carla Automated Dataset Extraction Tool (CADET), a novel tool for generating training data from the CARLA simulator to be used in autonomous driving research. The tool is able to export high-quality, synchronized LIDAR and camera data with object annotations, and offers configuration to accurately reflect a real-life sensor array. Furthermore, we use this tool to generate a dataset consisting of 10 000 samples and use this dataset in order to train the 3D object detection network AVOD-FPN, with finetuning on the KITTI dataset in order to evaluate the potential for effective pretraining. We also present two novel LIDAR feature map configurations in Bird's Eye View for use with AVOD-FPN that can be easily modified. These configurations are tested on the KITTI and CADET datasets in order to evaluate their performance as well as the usability of the simulated dataset for pretraining. Although insufficient to fully replace the use of real world data, and generally not able to exceed the performance of systems fully trained on real data, our results indicate that simulated data can considerably reduce the amount of training on real data required to achieve satisfactory levels of accuracy.Comment: 12 pages, part of proceedings for the NAIS 2019 symposiu

    Factors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants

    Get PDF
    Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin) that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases). Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results demonstrate that the inability of a sarA mutant to repress production of extracellular nuclease and multiple proteases have independent but cumulative effects that make a significant contribution to the biofilm-deficient phenotype of an S. aureus sarA mutant

    Update of complications and functional outcome of the ileo-pouch anal anastomosis: overview of evidence and meta-analysis of 96 observational studies

    Get PDF
    Item does not contain fulltextOBJECTIVE: The objective of this study is to provide a comprehensive update of the outcome of the ileo-pouch anal anastomosis (IPAA). DATA SOURCES: An extensive search in PubMed, EMBASE, and The Cochrane Library was conducted. STUDY SELECTION AND DATA EXTRACTION: All studies published after 2000 reporting on complications or functional outcome after a primary open IPAA procedure for UC or FAP were selected. Study characteristics, functional outcome, and complications were extracted. DATA SYNTHESIS: A review with similar methodology conducted 10 years earlier was used to evaluate developments in outcome over time. Pooled estimates were compared using a random-effects logistic meta-analyzing technique. Analyses focusing on the effect of time of study conductance, centralization, and variation in surgical techniques were performed. RESULTS: Fifty-three studies including 14,966 patients were included. Pooled rates of pouch failure and pelvic sepsis were 4.3% (95% CI, 3.5-6.3) and 7.5% (95% CI 6.1-9.1), respectively. Compared to studies published before 2000, a reduction of 2.5% was observed in the pouch failure rate (p = 0.0038). Analysis on the effect of the time of study conductance confirmed a decline in pouch failure. Functional outcome remained stable over time, with a 24-h defecation frequency of 5.9 (95% CI, 5.0-6.9). Technical surgery aspects did not have an important effect on outcome. CONCLUSION: This review provides up to date outcome estimates of the IPAA procedure that can be useful as reference values for practice and research. It is also shows a reduction in pouch failure over time.1 juli 201

    Accurate identification of human Alu and non-Alu RNA editing sites

    Get PDF
    We developed a computational framework to robustly identify RNA editing sites using transcriptome and genome deep-sequencing data from the same individual. As compared with previous methods, our approach identified a large number of Alu and non-Alu RNA editing sites with high specificity. We also found that editing of non-Alu sites appears to be dependent on nearby edited Alu sites, possibly through the locally formed double-stranded RNA structure

    In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection

    Get PDF
    The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore